Curvature invariants, Killing vector fields, connections and cohomogeneity
نویسندگان
چکیده
منابع مشابه
Vector Bundles, Connections and Curvature
Definition 1. Let M be a differentiable manifold. A C∞ complex vector bundle consists of a family {Ex}x∈M of complex vector spaces parametrized by M , together with a C∞ manifold structure of E = ∪x∈MEx such that 1. The projection map π : E →M taking Ex to x is C∞, and 2. For every x0 ∈M , there exists an open set U inM containing x0 and a diffeomorphism φU : π −1(U)→ U × C taking a vector spac...
متن کاملHarmonic-killing Vector Fields *
In this paper we consider the harmonicity of the 1-parameter group of local infinitesimal transformations associated to a vector field on a (pseudo-) Riemannian manifold to study this class of vector fields, which we call harmonic-Killing vector fields.
متن کاملVector Fields and Ricci Curvature
We shall prove theorems on nonexistence of certain types of vector fields on a compact manifold with a positive definite Riemannian metric whose Ricci curvature is either everywhere positive or everywhere negative. Actually we shall have some relaxations of the requirements both as to curvature and as to compactness. We shall deal with real spaces with a customary metric and with complex analyt...
متن کاملScalar Curvature, Killing Vector Fields and Harmonic One-forms on Compact Riemannian Manifolds
It is well known that no non-trivial Killing vector field exists on a compact Riemannian manifold of negative Ricci curvature; analogously, no non-trivial harmonic one-form exists on a compact manifold of positive Ricci curvature. One can consider the following, more general, problem. By reducing the assumption on the Ricci curvature to one on the scalar curvature, such vanishing theorems canno...
متن کاملLocalization formulas about two Killing vector fields
In this article, we will discuss the smooth (XM+ √ −1YM )-invariant forms on M and to establish a localization formulas. As an application, we get a localization formulas for characteristic numbers. The localization theorem for equivariant differential forms was obtained by Berline and Vergne(see [2]). They discuss on the zero points of a Killing vector field. Now, We will discuss on the points...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2008
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-08-09669-x